
KubeNow Documentation
Release master

mcapuccini

Oct 23, 2018

Getting Started

1 Prerequisites 3
1.1 Install Docker . 3
1.2 Get KubeNow . 3

2 Deploy KubeNow on a host cloud 5
2.1 Deploy on OpenStack . 5
2.2 Deploy on Google Cloud (GCE) . 7
2.3 Deploy on Amazon Web Services (AWS) . 9
2.4 Deploy on Microsoft Azure . 10

3 Deploy your first application 13
3.1 Traefik reverse proxy . 13

4 Clean after yourself 15

5 Terraform troubleshooting 17
5.1 Corrupted Terraform state . 17

6 OpenStack troubleshooting 19
6.1 Console logs on OpenStack . 19
6.2 Missing DomainID or DomainName to authenticate by Username 19

7 Kubernetes troubleshooting 21
7.1 List kubernetes pods . 21
7.2 Describe status of a specific pod . 21
7.3 Get the kubelet service log . 22

8 More troubleshooting 23
8.1 SSH connection errors . 23
8.2 Figure out hostnames and IP numbers . 23

9 Edge Nodes 25

10 GlusterFS Nodes 27
10.1 How to claim a GlusterFS volume . 27

11 Single-Node Deployments 29

i

12 Cloudflare DNS Records 31

13 Cloudflare: Proxied Traffic 33

14 Alternative Boot Image 35

15 Manual Cluster Scaling 37

16 Provisioning 39
16.1 Action type = “ansible-playbook” . 39
16.2 Action type = “local-exec” . 40

17 Ingress Port Opening 41
17.1 To Keep in Mind . 41

18 Image building 43

ii

KubeNow Documentation, Release master

Welcome to KubeNow’s documentation! This is a place where we aim to help you to provision Kubernetes, the
KubeNow’s way. If you are new to Kubernetes, and to cloud computing, this is going to take a while to grasp the first
time. Luckily, once you get the procedure, it’s going to be very quick to spawn your clusters.

Getting Started 1

KubeNow Documentation, Release master

2 Getting Started

CHAPTER 1

Prerequisites

1.1 Install Docker

KubeNow provisioners are distributed via Docker and they are based on Kubernetes 1.9.2. Please start by installing
Docker on your workstation: Install Docker.

1.2 Get KubeNow

In order to get the provisioning tools please run:

docker pull kubenow/provisioners:master

We wrote up a handy CLI that wraps around the Docker container above, you can install it with a one-liner:

curl -Lo kn https://raw.githubusercontent.com/kubenow/KubeNow/master/bin/kn &&
→˓ chmod +x kn && sudo mv kn /usr/local/bin/

3

https://www.docker.com/
https://docs.docker.com/engine/installation/

KubeNow Documentation, Release master

4 Chapter 1. Prerequisites

CHAPTER 2

Deploy KubeNow on a host cloud

The following steps are slightly different for each host cloud. Here you find a section for each of the supported
providers.

Sections

• Deploy KubeNow on a host cloud

– Deploy on OpenStack

– Deploy on Google Cloud (GCE)

– Deploy on Amazon Web Services (AWS)

– Deploy on Microsoft Azure

2.1 Deploy on OpenStack

2.1.1 Prerequisites

In this section we assume that:

• You have downloaded and sourced the OpenStack RC file for your tenancy: source project-openrc.
sh (https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html#
download-and-source-the-openstack-rc-file)

• You have a floating IP quota that allows to allocate at least one public IP

2.1.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

5

https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html#download-and-source-the-openstack-rc-file
https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html#download-and-source-the-openstack-rc-file

KubeNow Documentation, Release master

kn init openstack my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file config.tfvars you will need to set at least:

Cluster configuration

• cluster_prefix: every resource in your tenancy will be named with this prefix

• floating_ip_pool: a floating IP pool label

• external_network_uuid: the uuid of the external network in the OpenStack tenancy

If you are wondering where you can get floating_ip_pool and external_network_uuid, then one way is
to inquiry your OpenStack settings by running:

kn openstack network list

Depending on your tenancy settings you should get a similar output:

+--------------------------------------+----------------+...
| ID | Label |...
+--------------------------------------+----------------+...
| 5f274562-89b6-4ab2-a18f-94b159b0b85d | internal |...
| d9384930-baa5-422b-8657-1d42fb54f89c | net_external |...
+--------------------------------------+----------------+...

Thus in this specific case the above mentioned fields will be set as it follows:

floating_ip_pool = "net_external"
external_network_uuid = "d9384930-baa5-422b-8657-1d42fb54f89c"

Master configuration

• master_flavor: an instance flavor for the master

• master_extra_disk_size [optional]: adds an extra disk with specified size to the node

Node configuration

• node_count: number of Kubernetes nodes to be created (no floating IP is needed for these nodes)

• node_flavor: an instance flavor name for the Kubernetes nodes

• node_extra_disk_size [optional]: adds an extra disk with specified size to the node

• node_assign_floating_ip [optional]: adds a floating ip to this node

If you are wondering yet again where you can fetch correct flavor label names then no worries, you are not being a
stranger here. The openstack command-line interface will come in handy. Just run the following command:

kn openstack flavor list

Depending on your tenancy settings you should get a similar output:

6 Chapter 2. Deploy KubeNow on a host cloud

http://terraform.io/

KubeNow Documentation, Release master

+--------+------------+...
| ID | Name |...
+--------+------------+...
| 8c7ef1 | ssc.tiny |...
| 8d7ef2 | ssc.small |...
| 8e7ef3 | ssc.medium |...
| 8f7ef4 | ssc.large |...
| 8g7ef5 | ssc.xlarge |...
+--------+------------+...

You may want to select the favor according to much resources you’d like to allocate. E.g.:

master_flavor = "ssc.medium"
node_flavor = "ssc.large"

2.1.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future
deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

2.2 Deploy on Google Cloud (GCE)

2.2.1 Prerequisites

In this section we assume that:

• You have enabled the Google Compute Engine API: API Manager > Library > Compute Engine API > Enable

• You have created and downloaded a service account file for your GCE project: Api manager > Credentials >
Create credentials > Service account key

2.2.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init gce my_deployment

2.2. Deploy on Google Cloud (GCE) 7

KubeNow Documentation, Release master

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file config.tfvars you will need to set at least:

Cluster configuration

• cluster_prefix: every resource in your project will be named with this prefix (the name must match (?
:[a-z](?:[-a-z0-9]{0,61}[a-z0-9])?), e.g. “kubenow”)

Google credentials

• gce_project: your project id

• gce_zone: some GCE zone (e.g. europe-west1-b)

Master configuration

• master_flavor: an instance flavor for the master (e.g. n1-standard-2)

• master_disk_size: master disk size in GB

Node configuration

• node_count: number of Kubernetes nodes to be created

• node_flavor: an instance flavor for the Kubernetes nodes (e.g. n1-standard-2)

• node_disk_size: nodes disk size in GB

In addition, when deploying on GCE you need to copy your service account file in the deployment configuration
directory:

assuming that you are in my_deployment
cp /path/to/service-account.json ./

2.2.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future
deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

8 Chapter 2. Deploy KubeNow on a host cloud

http://terraform.io/

KubeNow Documentation, Release master

2.3 Deploy on Amazon Web Services (AWS)

2.3.1 Prerequisites

In this section we assume that:

• You have an IAM user along with its access key and security credentials (http://docs.aws.amazon.
com/IAM/latest/UserGuide/id_users_create.html)

2.3.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init aws my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file config.tfvars you will need to set at least:

Cluster configuration

• cluster_prefix: every resource in your tenancy will be named with this prefix

• aws_region: the region where your cluster will be bootstrapped (e.g. eu-west-1)

• availability_zone: an availability zone for your cluster (e.g. eu-west-1a)

Credentials

• aws_access_key_id: your access key id

• aws_secret_access_key: your secret access key

Master configuration

• master_instance_type: an instance type for the master (e.g. t2.medium)

• master_disk_size: edges disk size in GB

Node configuration

• node_count: number of Kubernetes nodes to be created

• node_instance_type: an instance type for the Kubernetes nodes (e.g. t2.medium)

• node_disk_size: edges disk size in GB

2.3.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

To check that your cluster is up and running you can run:

2.3. Deploy on Amazon Web Services (AWS) 9

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://terraform.io/

KubeNow Documentation, Release master

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

2.4 Deploy on Microsoft Azure

2.4.1 Prerequisites

In this section we assume that:

• You have created an application API key (Service Principal) in your Microsoft Azure subscription: (https://www.
terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal)

2.4.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init azure my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file config.tfvars you will need to set at least:

Cluster configuration

• cluster_prefix: every resource in your tenancy will be named with this prefix

• location: some Azure location (e.g. West Europe)

Azure credentials

• subscription_id: your subscription id

• client_id: your client id (also called appId)

• client_secret: your client secret (also called password)

• tenant_id: your tenant id

Master configuration

• master_vm_size: the vm size for the master (e.g. Standard_DS2_v2)

Node configuration

• node_count: number of Kubernetes nodes to be created

• node_vm_size: the vm size for the Kubernetes nodes (e.g. Standard_DS2_v2)

10 Chapter 2. Deploy KubeNow on a host cloud

https://www.terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal
https://www.terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal
http://terraform.io/

KubeNow Documentation, Release master

2.4.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future
deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

2.4. Deploy on Microsoft Azure 11

KubeNow Documentation, Release master

12 Chapter 2. Deploy KubeNow on a host cloud

CHAPTER 3

Deploy your first application

In this guide we are going to deploy a simple application: cheese. We will deploy 3 web pages with a 2 replication
factor. The master node will act as a reverse proxy, load balancing the requests among the replicas in the Kubernetes
nodes.

The simple cluster that we just deployed uses nip.io as base domain for incoming HTTP traffic. First, we need to figure
out our cluster domain by running:

grep domain inventory

The command will return something like domain=37.153.138.137.nip.io, meaning that our cluster domain
name in this case would be 37.153.138.137.nip.io.

In KubeNow we encourage to deploy and define SaaS-layer applications using Helm. The KubeNow commu-
nity maintain a Helm repository that contains applications that are developed and tested for KubeNow: https:
//github.com/kubenow/helm-charts. To deploy the cheese application you can run the following command, substi-
tuting <your-domain> with the domain name that you got above:

kn helm install --name cheese --set domain=<your-domain> kubenow/cheese

If everything goes well you should be able to access the web pages at:

• http://stilton.<your-domain>

• http://cheddar.<your-domain>

• http://wensleydale.<your-domain>

3.1 Traefik reverse proxy

KubeNow uses the Traefik reverse proxy as ingress controller for your cluster. Traefik is installed on one or more
nodes, namely edge nodes, which have a public IP associated. In this way, we can access services with a few floating
IP without needing LBaaS, which may not be available on certain cloud providers.

In the default setting KubeNow doesn’t deploy any edge node, and it runs Traefik in the master node.

13

https://github.com/kubenow/helm-charts/tree/master/charts/cheese
http://nip.io
https://github.com/kubernetes/helm
https://github.com/kubenow/helm-charts
https://github.com/kubenow/helm-charts
http://stilton
http://cheddar
http://wensleydale
https://traefik.io/

KubeNow Documentation, Release master

3.1.1 Accessing the Traefik UI

One simple and quick way to access the Traefik UI is to tunnel via SSH to one of the edge nodes with the following
command:

ssh -N -f -L localhost:8081:localhost:8081 ubuntu@<your-domain>

Using SSH tunnelling, the Traefik UI should be reachable at http://localhost:8081, and it should look something like
this:

In the left side you can find your deployed frontends URLs, whereas on the right side the backend services.

14 Chapter 3. Deploy your first application

http://localhost:8081

CHAPTER 4

Clean after yourself

Cloud resources are typically pay-per-use, hence it is good to release them when they are not used. Here we show how
to destroy a KubeNow cluster.

To release the resources, please run:

kn destroy

Warning: if you delete the cluster configuration directory (my_deployment) the cluster status will be lost, and
you’ll have to delete the resources manually.

15

KubeNow Documentation, Release master

16 Chapter 4. Clean after yourself

CHAPTER 5

Terraform troubleshooting

Since Terraform applies changes incrementally, when there is a minor issue (e.g. network timeout) it’s sufficient to
rerun the command. However, here we try to collect some tips that can be useful when rerunning the command doesn’t
help.

Contents

• Terraform troubleshooting

– Corrupted Terraform state

5.1 Corrupted Terraform state

Due to network issues, Terraform state files can get out of synch with your infrastructure, and cause problems. Since
Terraform apply changes increme. A possible way to fix the issue is to destroy your nodes manually, and remove all
state files and cached modules:

rm -R .terraform/
rm terraform.tfstate
rm terraform.tfstate.backup

17

KubeNow Documentation, Release master

18 Chapter 5. Terraform troubleshooting

CHAPTER 6

OpenStack troubleshooting

Contents

• OpenStack troubleshooting

– Console logs on OpenStack

– Missing DomainID or DomainName to authenticate by Username

6.1 Console logs on OpenStack

Can’t get the status from the nodes with ansible master -a "kubectl get nodes"? The nodes might
not have started all right. Checking the console logs with nova could help.

List node IDs, floating IPs etc.:

nova list

Show console output from node of interest:

nova console-log <node-id>

6.2 Missing DomainID or DomainName to authenticate by Username

When running terraform and/or packer you may be prompted with the following error:

You must provide exactly one of DomainID or DomainName to authenticate by Username

19

KubeNow Documentation, Release master

If this is the case, then setting either OS_DOMAIN_ID or OS_DOMAIN_NAME in your environment should fix the
issue. For further information, please refer to this document: https://www.terraform.io/docs/providers/openstack/
index.html.

20 Chapter 6. OpenStack troubleshooting

https://www.terraform.io/docs/providers/openstack/index.html
https://www.terraform.io/docs/providers/openstack/index.html

CHAPTER 7

Kubernetes troubleshooting

Here you can find some frequently used commands to list the status and logs of kubernetes. If this doesn’t help, please
refer to http://kubernetes.io/docs.

Contents

• Kubernetes troubleshooting

– List kubernetes pods

– Describe status of a specific pod

– Get the kubelet service log

7.1 List kubernetes pods

If you are logged into the node via SSH:
kubectl get pods --all-namespaces

With Ansible from your local computer:
kn ansible master -a "kubectl get pods --all-namespaces"

7.2 Describe status of a specific pod

If you are logged into the node via SSH:
kubectl describe pod <pod id> --all-namespaces

With Ansible from your local computer:
kn ansible master -a "kubectl describe pod <pod id> --all-namespaces"

21

http://kubernetes.io/docs

KubeNow Documentation, Release master

7.3 Get the kubelet service log

If you are logged into the node via SSH:
sudo journalctl -r -u kubelet

With Ansible from your local computer:
kn ansible master -a "journalctl -r -u kubelet"

22 Chapter 7. Kubernetes troubleshooting

CHAPTER 8

More troubleshooting

Contents

• More troubleshooting

– SSH connection errors

– Figure out hostnames and IP numbers

8.1 SSH connection errors

In case of SSH connection errors:

• Make sure to add your private SSH key to your local keyring:

ssh-add ~/.ssh/id_rsa

• Make sure that port 22 is allowed in your cloud provider security settings.

If you still experience problems, checking out the console logs from your cloud provider could help.

8.2 Figure out hostnames and IP numbers

The bootstrap step should create an Ansible inventory list, which contains hostnames and IP addresses:

cat inventory

23

KubeNow Documentation, Release master

24 Chapter 8. More troubleshooting

CHAPTER 9

Edge Nodes

Edge nodes are specialized service nodes with an associated public IP address, and they run Traefik acting as reverse
proxies, and load balancers, for the services that are exposed to the Internet. In the default settings, we don’t deploy any
edge node enabling the reverse proxy logic in the master node instead. However, in production settings we recommend
to deploy one or more edge nodes to reduce the load in the master.

To deploy edge nodes, it is sufficient to uncomment the following lines in the config.tfvars file, and to set the
desired number of edge nodes, along with an available instance flavor:

Master configuration (mandatory in general, above all for single-server setup)
master_flavor = "your-master-flavor"
master_as_edge = "false"

Edge configuration
edge_count = "2"
edge_flavor = "your-edge-flavor"

Please notice that we set master_as_edge = "false" to disable Traefik in the master node.

25

https://traefik.io

KubeNow Documentation, Release master

26 Chapter 9. Edge Nodes

CHAPTER 10

GlusterFS Nodes

GlusterFS nodes are specialized service nodes. They run only GlusterFS and they are attached to a block storage
volume to provide additional capacity. In the default settings, we don’t deploy GlusterFS nodes, as it is not required
in many use cases. However, GlusterFS can be particularly convenient when a distributed file system is needed for
container synchronization.

To deploy GlusterFS nodes, it is sufficient to uncomment the following lines in the config.tfvars file, and to set
the desired number of edge nodes, along with an available instance flavor and block storage disk size:

Gluster configuration
glusternode_count = "1"
glusternode_flavor = "your-glusternode-flavor"
glusternode_extra_disk_size = "200" # Size in GB

10.1 How to claim a GlusterFS volume

KubeNow is configured to employ the Kubernetes dynamic volume provisioning, enabling GlusterFS storage volumes
to be created on-demand. In addition, GlusterFS is configured as default StorageClass, meaning that when a user
creates a PersistentVolumeClaim with unspecified storageClassName (i.e. left empty), the DefaultStorageClass
admission controller automatically adds the GlusterFS storageClassName.

In practice, users can request GlusterFS dynamically provisioned storage by simply leaving the storageClassName
field empty within their PersistentVolumeClaim template. An example follows:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: name-you-choose
spec:
accessModes:

- ReadWriteOnce
storageClassName: # left empty
resources:

(continues on next page)

27

https://www.gluster.org
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

KubeNow Documentation, Release master

(continued from previous page)

requests:
storage: 1Gi

28 Chapter 10. GlusterFS Nodes

CHAPTER 11

Single-Node Deployments

When resources are scarce, or for testing purpose, KubeNow enables single-node deployments. In fact, it is possible
to deploy the master node only, which will automatically enabled for service scheduling.

You can achieve this by commenting all of the lines for the other instance types (i.e. edge node, gluster node and
worker node) in the config.tfvars file, leaving the master node only as it is shown below:

Master configuration (mandatory in general, above all for single-server setup)
master_flavor = "your-master-flavor"
master_as_edge = "true"

Node configuration
node_count = "3"
node_flavor = "your-node-flavor"

Edge configuration
edge_count = "2"
edge_flavor = "your-edge-flavor"

Gluster configuration
glusternode_count = "1"
glusternode_flavor = "your-glusternode-flavor"
glusternode_extra_disk_size = "200" # Size in GB

29

KubeNow Documentation, Release master

30 Chapter 11. Single-Node Deployments

CHAPTER 12

Cloudflare DNS Records

Cloudflare runs one of the largest authoritative DNS networks in the world. In order to resolve domain names for
exposed services, KubeNow can optionally configure the Cloudflare dynamic DNS service, so that a base domain
name will resolve to the edge nodes (or the master node if no edge node is deployed).

To configure the Cloudflare dynamic DNS service, it is sufficient to uncomment the following lines in the config.
tfvars file, specifying credentials, domain and subdomain:

Cloudflare configuration (optional)
use_cloudflare = "true"
cloudflare_email = "your-cloudflare-email"
cloudflare_token = "your-cloudflare-token"
cloudflare_domain = "your-domain-name"
cloudflare_subdomain = "your-subdomain-name"

31

https://www.cloudflare.com

KubeNow Documentation, Release master

32 Chapter 12. Cloudflare DNS Records

CHAPTER 13

Cloudflare: Proxied Traffic

Incoming container traffic can be optionally proxied through the Cloudflare servers. When operating in this mode
Cloudflare provides HTTPS for container services, and it protects against distributed denial of service, customer data
breach and malicious bot abuse.

To enable Cloudflare proxied traffic, it is sufficient to uncomment the following lines in the config.tfvars file,
specifying DNS records to be proxied:

Cloudflare proxy (optional)
cloudflare_proxied = "true"
cloudflare_record_texts = ["record1","record2",...] # Warn: wildcards are not
→˓supported when using proxied records

33

https://www.cloudflare.com

KubeNow Documentation, Release master

34 Chapter 13. Cloudflare: Proxied Traffic

CHAPTER 14

Alternative Boot Image

KubeNow now allows to specify an alternative boot image of your choice for your cluster VMs. However KubeNow
doesn’t support yet an automatic downloading and/or uploading for a custom image, therefore you need to make sure
such custom (or non-custom image) is already present in the cloud provider image repository you are using for your
deployment.

This can be achieved easily by changing just a couple of lines in the config.tfvars file created by the initial com-
mand kn init as explained here. It is also necessary and important to set the parameter skip_image_import
equal to "true" in order to avoid triggering the default importing mechanism that KubeNow supports for our cus-
tomed images.

In the following snippet of code you can see how these changes should look like in the config.tfvars for each
currently supported cloud-provider (a generic Ubuntu Xenial 16.04 image is used in the examples below):

Amazon:

boot_image = "ubuntu/images/hvm-ssd/ubuntu-xenial-16.04-amd64-server-201803*"
skip_image_import = "true"

Google cloud:

boot_image = "ubuntu-1604-lts"
skip_image_import = "true"

OpenStack:

boot_image = "Ubuntu 16.04 LTS (Xenial Xerus) - latest"
skip_image_import = "true"

Microsoft Azure:

boot_image_public {
publisher = "Canonical"
offer = "UbuntuServer"
sku = "16.04-LTS"
version = "latest"

(continues on next page)

35

../getting_started/bootstrap.html

KubeNow Documentation, Release master

(continued from previous page)

}
skip_image_import = "true"

In this case you also need to comment out or remove the whole boot_image parameter
→˓'s line
boot_image = "KubeNow-xx"

36 Chapter 14. Alternative Boot Image

CHAPTER 15

Manual Cluster Scaling

KubeNow is now featuring the ability to add or delete nodes to your cluster with the help of the command kn scale.

While your cluster is deployed and running, it is necessary first to update the number of nodes in the config.
tfvars file created by the very first command kn init as explained here . Currently kn-scale is only supporting
adding and removing worker nodes or edge nodes (not master nodes). Last but not least, it is important to have at least
one node left with enough space for your running services.

Once the config.tfvars has been updated with the new desired number of nodes, then we simply run the com-
mand:

kn scale

What will happen depends on whether we are downscaling or upscaling.

In the former scenario the command will first drain resources out of one or more node/s by executing kubectl
drain, then remove it/them via kubectl delete node and finally a call to terraform apply will shut
it/them down.

In the latter case one or more new node/s is/are first created by executing terraform apply and then joined to the
already deployed cluster via kubeadm join by using our default bootstrap script (more details of such script in the
main KubeNow’s GitHub repository).

37

../getting_started/bootstrap.html
https://github.com/kubenow/KubeNow/blob/master/bootstrap/bootstrap-default.sh

KubeNow Documentation, Release master

38 Chapter 15. Manual Cluster Scaling

CHAPTER 16

Provisioning

It is now possible to both automatically and manually provision the cluster’s instances via the master node. This is
done by simply adding a provision block in your config.tfvars (which by now you should be familiar with). If
available, such block will be automatically executed when the command kn apply is run. Otherwise we can also
manually execute it with the new command kn provision.

A provision block can have one or several action{ } sub-block/s. The latter will always have at least a type field,
which can either be ansible-playbook or local-exec. Based on these two scenarios, it is then necessary to
introduce a couple of specific variables as shown in the examples here below.

Note: The Ansible version being used is the one installed in the KubeNow Docker image.

16.1 Action type = “ansible-playbook”

In this scenario, the following ansible-playbook specific variables will be used, with the exception of extra_vars
which is optional:

playbook = "path-to-playbook (relative config-directory)"
extra_vars = "json-obj of extra variables (complying to hcl-json-syntax, see https://
→˓github.com/hashicorp/hcl)"

Example without extra_vars:

#
This block is equivalent to the command:
#
ansible-playbook $ANSIBLE_OPT playbooks/install-core.yml
#
provision = {

"action" = {
"type" = "ansible-playbook"
"playbook" = "playbooks/install-core.yml"

}
}

39

KubeNow Documentation, Release master

Example with extra_vars:

#
This block is equivalent to the command:
#
ansible-playbook $ANSIBLE_OPT -e "$extra_vars" playbooks/create-pvc.yml
#
provision = {

"action" = {
"type" = "ansible-playbook"
"playbook" = "playbooks/create-pvc.yml"
"extra_vars" = {

"claim_name" = "galaxy-pvc"
"storage" = "95G"

}
}

}

16.2 Action type = “local-exec”

In this other case, we only have one local-exec specific variable that must be present in order to work:

command = "command to execute - can be path to a script (relative config-directory)"

Example:

#
This block is equivalent to the command:
#
plugins/phnmnl/KubeNow-plugin/bin/phenomenal-post-install.sh
#
provision = {

"action" = {
"type" = "local-exec"
"command" = "plugins/phnmnl/KubeNow-plugin/bin/phenomenal-post-install.sh"

}
}

40 Chapter 16. Provisioning

CHAPTER 17

Ingress Port Opening

On some deployments you might need to manually configure ports in order to allow specific service traffic. This can
be done by adding/modifying the field ports_ingress_tcp in the configuration file config.tfvars (which
you should be familiar with by now). Default is equals to ["22", "80", "443"]. Let’s suppose your newly
deployed service also requires ports 7443 and 9443 to be opened, then one would modify the config.tfvars as
follows:

Cluster configuration
....

ports_ingress_tcp = ["22", "80", "443", "7443", "9443"]

....

Hence we’ve modified the field ports_ingress_tcp so to read ports_ingress_tcp = [“22”, “80”, “443”, 7443”,
“9443”].

17.1 To Keep in Mind

It is important to consider potential security risks to avoid future issues. While opening ports does put you more at
risk than having none open, you are only in danger if an attack can exploit the service that is using that port. A port is
not an all access pass to a cluster/network if an attacker happens upon it. Security is a complex topic indeed and can
vary from case to case. Nevertheless here are some best practices for a proper configuration:

• Block by default: block all traffic by default and explicitly allow only specific traffic to known services. This
strategy provides good control over the traffic and reduces the possibility of a breach because of service miscon-
figuration.

• Allow specific traffic:in general the rules that you use to define network access should be as specific as possible.
This strategy is referred to as the principle of least privilege, and it forces control over network traffic. In this
case what you are specifying is a certain port (or list of them) for your services to be reachable from outside the
cluster’s network.

41

KubeNow Documentation, Release master

42 Chapter 17. Ingress Port Opening

CHAPTER 18

Image building

KubeNow uses prebuilt images to speed up the deployment. Image continous integration is defined in this repository:
https://github.com/kubenow/image.

The images are exported on AWS, GCE and Azure:

• https://storage.googleapis.com/kubenow-images/kubenow-<version-without-dots>.
tar.gz

• https://s3.amazonaws.com/kubenow-us-east-1/kubenow-<version-without-dots>.
qcow2

• https://kubenow.blob.core.windows.net/system?restype=container&comp=list

Please refer to this page to figure out the image version: https://github.com/kubenow/image/releases. It is important to
point out that the image versioning is now disjoint from the main KubeNow repository versioning. The main reason
lies in the fact that pre-built images require less revisions and updates compared to the main KubeNow package.

43

https://github.com/kubenow/image
https://github.com/kubenow/image/releases

	Prerequisites
	Install Docker
	Get KubeNow

	Deploy KubeNow on a host cloud
	Deploy on OpenStack
	Deploy on Google Cloud (GCE)
	Deploy on Amazon Web Services (AWS)
	Deploy on Microsoft Azure

	Deploy your first application
	Traefik reverse proxy

	Clean after yourself
	Terraform troubleshooting
	Corrupted Terraform state

	OpenStack troubleshooting
	Console logs on OpenStack
	Missing DomainID or DomainName to authenticate by Username

	Kubernetes troubleshooting
	List kubernetes pods
	Describe status of a specific pod
	Get the kubelet service log

	More troubleshooting
	SSH connection errors
	Figure out hostnames and IP numbers

	Edge Nodes
	GlusterFS Nodes
	How to claim a GlusterFS volume

	Single-Node Deployments
	Cloudflare DNS Records
	Cloudflare: Proxied Traffic
	Alternative Boot Image
	Manual Cluster Scaling
	Provisioning
	Action type = “ansible-playbook”
	Action type = “local-exec”

	Ingress Port Opening
	To Keep in Mind

	Image building

