
KubeNow Documentation
Release 0.3.0

mcapuccini

Dec 13, 2017

Getting Started

1 Prerequisites 3
1.1 Install Docker . 3
1.2 Get KubeNow . 3

2 Deploy KubeNow on a host cloud 5
2.1 Deploy on OpenStack . 5
2.2 Deploy on Google Cloud (GCE) . 7
2.3 Deploy on Amazon Web Services (AWS) . 8
2.4 Deploy on Microsoft Azure . 10

3 Deploy your first application 13
3.1 Traefik reverse proxy . 13

4 Clean after yourself 15

5 Terraform troubleshooting 17
5.1 Corrupted Terraform state . 17

6 OpenStack troubleshooting 19
6.1 Console logs on OpenStack . 19
6.2 Missing DomainID or DomainName to authenticate by Username 19

7 Kubernetes troubleshooting 21
7.1 List kubernetes pods . 21
7.2 Describe status of a specific pod . 21
7.3 Get the kubelet service log . 22

8 More troubleshooting 23
8.1 SSH connection errors . 23
8.2 Figure out hostnames and IP numbers . 23

9 Image building 25

i

ii

KubeNow Documentation, Release 0.3.0

Welcome to KubeNow’s documentation! This is a place where we aim to help you to provision Kubernetes, the
KubeNow’s way. If you are new to Kubernetes, and to cloud computing, this is going to take a while to grasp the first
time. Luckily, once you get the procedure, it’s going to be very quick to spawn your clusters.

Getting Started 1

KubeNow Documentation, Release 0.3.0

2 Getting Started

CHAPTER 1

Prerequisites

1.1 Install Docker

KubeNow provisioners are distributed via Docker. Please start by installing Docker on your workstation: Install
Docker.

1.2 Get KubeNow

In order to get the provisioning tools please run:

docker pull kubenow/provisioners:0.3.0

We wrote up a handy CLI that wraps around the Docker container above, you can install it with a one-liner:

curl -Lo kn https://github.com/kubenow/KubeNow/releases/download/0.3.0/kn &&
→˓chmod +x kn && sudo mv kn /usr/local/bin/

3

https://www.docker.com/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

KubeNow Documentation, Release 0.3.0

4 Chapter 1. Prerequisites

CHAPTER 2

Deploy KubeNow on a host cloud

The following steps are slightly different for each host cloud. Here you find a section for each of the supported
providers.

Sections

• Deploy KubeNow on a host cloud

– Deploy on OpenStack

– Deploy on Google Cloud (GCE)

– Deploy on Amazon Web Services (AWS)

– Deploy on Microsoft Azure

2.1 Deploy on OpenStack

2.1.1 Prerequisites

In this section we assume that:

• You have downloaded and sourced the OpenStack RC file for your tenancy: source project-openrc.
sh (https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html#
download-and-source-the-openstack-rc-file)

• You have a floating IP quota that allows to allocate at least one public IP

2.1.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

5

https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html#download-and-source-the-openstack-rc-file
https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html#download-and-source-the-openstack-rc-file

KubeNow Documentation, Release 0.3.0

kn init openstack my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

• cluster_prefix: every resource in your tenancy will be named with this prefix

• floating_ip_pool: a floating IP pool label

• external_network_uuid: the uuid of the external network in the OpenStack tenancy

If you are wondering where you can get floating_ip_pool and external_network_uuid, then one way is
to inquiry your OpenStack settings by running:

kn openstack network list

Depending on your tenancy settings you should get a similar output:

+--------------------------------------+----------------+...
| ID | Label |...
+--------------------------------------+----------------+...
| 5f274562-89b6-4ab2-a18f-94b159b0b85d | internal |...
| d9384930-baa5-422b-8657-1d42fb54f89c | net_external |...
+--------------------------------------+----------------+...

Thus in this specific case the above mentioned fields will be set as it follows:

floating_ip_pool = "net_external"
external_network_uuid = "d9384930-baa5-422b-8657-1d42fb54f89c"

Master configuration

• master_flavor: an instance flavor for the master

Node configuration

• node_count: number of Kubernetes nodes to be created (no floating IP is needed for these nodes)

• node_flavor: an instance flavor name for the Kubernetes nodes

If you are wondering yet again where you can fetch correct flavor label names then no worries, you are not being a
stranger here. The openstack command-line interface will come in handy. Just run the following command:

kn openstack flavor list

Depending on your tenancy settings you should get a similar output:

+--------+------------+...
| ID | Name |...
+--------+------------+...
| 8c7ef1 | ssc.tiny |...
| 8d7ef2 | ssc.small |...
| 8e7ef3 | ssc.medium |...
| 8f7ef4 | ssc.large |...

6 Chapter 2. Deploy KubeNow on a host cloud

http://terraform.io/

KubeNow Documentation, Release 0.3.0

| 8g7ef5 | ssc.xlarge |...
+--------+------------+...

You may want to select the favor according to much resources you’d like to allocate. E.g.:

master_flavor = "ssc.medium"
node_flavor = "ssc.large"

2.1.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future
deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

2.2 Deploy on Google Cloud (GCE)

2.2.1 Prerequisites

In this section we assume that:

• You have enabled the Google Compute Engine API: API Manager > Library > Compute Engine API > Enable

• You have created and downloaded a service account file for your GCE project: Api manager > Credentials >
Create credentials > Service account key

2.2.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init gce my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

2.2. Deploy on Google Cloud (GCE) 7

http://terraform.io/

KubeNow Documentation, Release 0.3.0

• cluster_prefix: every resource in your project will be named with this prefix (the name must match (?
:[a-z](?:[-a-z0-9]{0,61}[a-z0-9])?), e.g. “kubenow”)

Google credentials

• gce_project: your project id

• gce_zone: some GCE zone (e.g. europe-west1-b)

Master configuration

• master_flavor: an instance flavor for the master (e.g. n1-standard-2)

• master_disk_size: master disk size in GB

Node configuration

• node_count: number of Kubernetes nodes to be created

• node_flavor: an instance flavor for the Kubernetes nodes (e.g. n1-standard-2)

• node_disk_size: nodes disk size in GB

In addition, when deploying on GCE you need to copy your service account file in the deployment configuration
directory:

assuming that you are in my_deployment
cp /path/to/service-account.json ./

2.2.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future
deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

2.3 Deploy on Amazon Web Services (AWS)

2.3.1 Prerequisites

In this section we assume that:

• You have an IAM user along with its access key and security credentials (http://docs.aws.amazon.
com/IAM/latest/UserGuide/id_users_create.html)

8 Chapter 2. Deploy KubeNow on a host cloud

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

KubeNow Documentation, Release 0.3.0

2.3.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init aws my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

• cluster_prefix: every resource in your tenancy will be named with this prefix

• aws_region: the region where your cluster will be bootstrapped (e.g. eu-west-1)

• availability_zone: an availability zone for your cluster (e.g. eu-west-1a)

Credentials

• aws_access_key_id: your access key id

• aws_secret_access_key: your secret access key

Master configuration

• master_instance_type: an instance type for the master (e.g. t2.medium)

• master_disk_size: edges disk size in GB

Node configuration

• node_count: number of Kubernetes nodes to be created

• node_instance_type: an instance type for the Kubernetes nodes (e.g. t2.medium)

• node_disk_size: edges disk size in GB

2.3.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

2.3. Deploy on Amazon Web Services (AWS) 9

http://terraform.io/

KubeNow Documentation, Release 0.3.0

2.4 Deploy on Microsoft Azure

2.4.1 Prerequisites

In this section we assume that:

• You have created an application API key (Service Principal) in your Microsoft Azure subscription: (https://www.
terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal)

2.4.2 Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init azure my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform configuration template
that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

• cluster_prefix: every resource in your tenancy will be named with this prefix

• location: some Azure location (e.g. West Europe)

Azure credentials

• subscription_id: your subscription id

• client_id: your client id (also called appId)

• client_secret: your client secret (also called password)

• tenant_id: your tenant id

Master configuration

• master_vm_size: the vm size for the master (e.g. Standard_DS2_v2)

Node configuration

• node_count: number of Kubernetes nodes to be created

• node_vm_size: the vm size for the Kubernetes nodes (e.g. Standard_DS2_v2)

2.4.3 Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future
deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

10 Chapter 2. Deploy KubeNow on a host cloud

https://www.terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal
https://www.terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal
http://terraform.io/

KubeNow Documentation, Release 0.3.0

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you
want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

2.4. Deploy on Microsoft Azure 11

KubeNow Documentation, Release 0.3.0

12 Chapter 2. Deploy KubeNow on a host cloud

CHAPTER 3

Deploy your first application

In this guide we are going to deploy a simple application: cheese. We will deploy 3 web pages with a 2 replication
factor. The master node will act as a reverse proxy, load balancing the requests among the replicas in the Kubernetes
nodes.

The simple cluster that we just deployed uses nip.io as base domain for incoming HTTP traffic. First, we need to figure
out our cluster domain by running:

grep domain inventory

The command will return something like domain=37.153.138.137.nip.io, meaning that our cluster domain
name in this case would be 37.153.138.137.nip.io.

In KubeNow we encourage to deploy and define SaaS-layer applications using Helm. The KubeNow commu-
nity maintain a Helm repository that contains applications that are developed and tested for KubeNow: https:
//github.com/kubenow/helm-charts. To deploy the cheese application you can run the following command, substi-
tuting <your-domain> with the domain name that you got above:

kn helm install --name cheese --set domain=<your-domain> kubenow/cheese

If everything goes well you should be able to access the web pages at:

• http://stilton.<your-domain>

• http://cheddar.<your-domain>

• http://wensleydale.<your-domain>

3.1 Traefik reverse proxy

KubeNow uses the Traefik reverse proxy as ingress controller for your cluster. Traefik is installed on one or more
nodes, namely edge nodes, which have a public IP associated. In this way, we can access services with a few floating
IP without needing LBaaS, which may not be available on certain cloud providers.

In the default setting KubeNow doesn’t deploy any edge node, and it runs Traefik in the master node.

13

https://github.com/kubenow/helm-charts/tree/master/charts/cheese
http://nip.io
https://github.com/kubernetes/helm
https://github.com/kubenow/helm-charts
https://github.com/kubenow/helm-charts
http://stilton
http://cheddar
http://wensleydale
https://traefik.io/

KubeNow Documentation, Release 0.3.0

3.1.1 Accessing the Traefik UI

One simple and quick way to access the Traefik UI is to tunnel via SSH to one of the edge nodes with the following
command:

ssh -N -f -L localhost:8081:localhost:8081 ubuntu@<your-domain>

Using SSH tunnelling, the Traefik UI should be reachable at http://localhost:8081, and it should look something like
this:

In the left side you can find your deployed frontends URLs, whereas on the right side the backend services.

14 Chapter 3. Deploy your first application

http://localhost:8081

CHAPTER 4

Clean after yourself

Cloud resources are typically pay-per-use, hence it is good to release them when they are not used. Here we show how
to destroy a KubeNow cluster.

To release the resources, please run:

kn destroy

Warning: if you delete the cluster configuration directory (my_deployment) the cluster status will be lost, and
you’ll have to delete the resources manually.

15

KubeNow Documentation, Release 0.3.0

16 Chapter 4. Clean after yourself

CHAPTER 5

Terraform troubleshooting

Since Terraform applies changes incrementally, when there is a minor issue (e.g. network timeout) it’s sufficient to
rerun the command. However, here we try to collect some tips that can be useful when rerunning the command doesn’t
help.

Contents

• Terraform troubleshooting

– Corrupted Terraform state

5.1 Corrupted Terraform state

Due to network issues, Terraform state files can get out of synch with your infrastructure, and cause problems. Since
Terraform apply changes increme. A possible way to fix the issue is to destroy your nodes manually, and remove all
state files and cached modules:

rm -R .terraform/
rm terraform.tfstate
rm terraform.tfstate.backup

17

KubeNow Documentation, Release 0.3.0

18 Chapter 5. Terraform troubleshooting

CHAPTER 6

OpenStack troubleshooting

Contents

• OpenStack troubleshooting

– Console logs on OpenStack

– Missing DomainID or DomainName to authenticate by Username

6.1 Console logs on OpenStack

Can’t get the status from the nodes with ansible master -a "kubectl get nodes"? The nodes might
not have started all right. Checking the console logs with nova could help.

List node IDs, floating IPs etc.:

nova list

Show console output from node of interest:

nova console-log <node-id>

6.2 Missing DomainID or DomainName to authenticate by Username

When running terraform and/or packer you may be prompted with the following error:

You must provide exactly one of DomainID or DomainName to authenticate by Username

19

KubeNow Documentation, Release 0.3.0

If this is the case, then setting either OS_DOMAIN_ID or OS_DOMAIN_NAME in your environment should fix the
issue. For further information, please refer to this document: https://www.terraform.io/docs/providers/openstack/
index.html.

20 Chapter 6. OpenStack troubleshooting

https://www.terraform.io/docs/providers/openstack/index.html
https://www.terraform.io/docs/providers/openstack/index.html

CHAPTER 7

Kubernetes troubleshooting

Here you can find some frequently used commands to list the status and logs of kubernetes. If this doesn’t help, please
refer to http://kubernetes.io/docs.

Contents

• Kubernetes troubleshooting

– List kubernetes pods

– Describe status of a specific pod

– Get the kubelet service log

7.1 List kubernetes pods

If you are logged into the node via SSH:
kubectl get pods --all-namespaces

With Ansible from your local computer:
kn ansible master -a "kubectl get pods --all-namespaces"

7.2 Describe status of a specific pod

If you are logged into the node via SSH:
kubectl describe pod <pod id> --all-namespaces

With Ansible from your local computer:
kn ansible master -a "kubectl describe pod <pod id> --all-namespaces"

21

http://kubernetes.io/docs

KubeNow Documentation, Release 0.3.0

7.3 Get the kubelet service log

If you are logged into the node via SSH:
sudo journalctl -r -u kubelet

With Ansible from your local computer:
kn ansible master -a "journalctl -r -u kubelet"

22 Chapter 7. Kubernetes troubleshooting

CHAPTER 8

More troubleshooting

Contents

• More troubleshooting

– SSH connection errors

– Figure out hostnames and IP numbers

8.1 SSH connection errors

In case of SSH connection errors:

• Make sure to add your private SSH key to your local keyring:

ssh-add ~/.ssh/id_rsa

• Make sure that port 22 is allowed in your cloud provider security settings.

If you still experience problems, checking out the console logs from your cloud provider could help.

8.2 Figure out hostnames and IP numbers

The bootstrap step should create an Ansible inventory list, which contains hostnames and IP addresses:

cat inventory

23

KubeNow Documentation, Release 0.3.0

24 Chapter 8. More troubleshooting

CHAPTER 9

Image building

KubeNow uses prebuilt images to speed up the deployment. Image continous integration is defined in this repository:
https://github.com/kubenow/image.

The images are exported on AWS, GCE and Azure:

• https://storage.googleapis.com/kubenow-images/kubenow-<version-without-dots>.
tar.gz

• https://s3.amazonaws.com/kubenow-us-east-1/kubenow-<version-without-dots>.
qcow2

• https://kubenow.blob.core.windows.net/system?restype=container&comp=list

Please refer to this page to figure out the image version: https://github.com/kubenow/image/releases. It is important to
point out that the image versioning is now disjoint from the main KubeNow repository versioning. The main reason
lies in the fact that pre-built images require less revisions and updates compared to the main KubeNow package.

25

https://github.com/kubenow/image
https://github.com/kubenow/image/releases

	Prerequisites
	Install Docker
	Get KubeNow

	Deploy KubeNow on a host cloud
	Deploy on OpenStack
	Deploy on Google Cloud (GCE)
	Deploy on Amazon Web Services (AWS)
	Deploy on Microsoft Azure

	Deploy your first application
	Traefik reverse proxy

	Clean after yourself
	Terraform troubleshooting
	Corrupted Terraform state

	OpenStack troubleshooting
	Console logs on OpenStack
	Missing DomainID or DomainName to authenticate by Username

	Kubernetes troubleshooting
	List kubernetes pods
	Describe status of a specific pod
	Get the kubelet service log

	More troubleshooting
	SSH connection errors
	Figure out hostnames and IP numbers

	Image building

