

Welcome to KubeNow’s documentation!

Welcome to KubeNow’s documentation! This is a place where we aim to help you to provision Kubernetes, the KubeNow’s way. If you are new to Kubernetes, and to cloud computing, this is going to take a while to grasp the first time. Luckily, once you get the procedure, it’s going to be very quick to spawn your clusters.

Getting Started

	Prerequisites
	Install Docker

	Get KubeNow

	Deploy KubeNow on a host cloud
	Deploy on OpenStack

	Deploy on Google Cloud (GCE)

	Deploy on Amazon Web Services (AWS)

	Deploy on Microsoft Azure

	Deploy your first application
	Traefik reverse proxy

	Clean after yourself

Troubleshooting

	Terraform troubleshooting

	OpenStack troubleshooting

	Kubernetes troubleshooting

	More troubleshooting

Developers guide

	Image building

Prerequisites

Install Docker

KubeNow provisioners are distributed via Docker [https://www.docker.com/]. Please start by installing Docker on your workstation: Install Docker [https://docs.docker.com/engine/installation/].

Get KubeNow

In order to get the provisioning tools please run:

docker pull kubenow/provisioners:0.3.0

We wrote up a handy CLI that wraps around the Docker container above, you can install it with a one-liner:

curl -Lo kn https://github.com/kubenow/KubeNow/releases/download/0.3.0/kn && chmod +x kn && sudo mv kn /usr/local/bin/

Deploy KubeNow on a host cloud

The following steps are slightly different for each host cloud. Here you find a section for each of the supported providers.

Sections

	Deploy KubeNow on a host cloud
	Deploy on OpenStack

	Deploy on Google Cloud (GCE)

	Deploy on Amazon Web Services (AWS)

	Deploy on Microsoft Azure

Deploy on OpenStack

Prerequisites

In this section we assume that:

	You have downloaded and sourced the OpenStack RC file for your tenancy: source project-openrc.sh (https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html#download-and-source-the-openstack-rc-file)

	You have a floating IP quota that allows to allocate at least one public IP

Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init openstack my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform [http://terraform.io/] configuration template that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

	cluster_prefix: every resource in your tenancy will be named with this prefix

	floating_ip_pool: a floating IP pool label

	external_network_uuid: the uuid of the external network in the OpenStack tenancy

If you are wondering where you can get floating_ip_pool and external_network_uuid, then one way is to inquiry your OpenStack settings by running:

kn openstack network list

Depending on your tenancy settings you should get a similar output:

+--------------------------------------+----------------+...
| ID | Label |...
+--------------------------------------+----------------+...
| 5f274562-89b6-4ab2-a18f-94b159b0b85d | internal |...
| d9384930-baa5-422b-8657-1d42fb54f89c | net_external |...
+--------------------------------------+----------------+...

Thus in this specific case the above mentioned fields will be set as it follows:

floating_ip_pool = "net_external"
external_network_uuid = "d9384930-baa5-422b-8657-1d42fb54f89c"

Master configuration

	master_flavor: an instance flavor for the master

Node configuration

	node_count: number of Kubernetes nodes to be created (no floating IP is needed for these nodes)

	node_flavor: an instance flavor name for the Kubernetes nodes

If you are wondering yet again where you can fetch correct flavor label names then no worries, you are not being a stranger here. The openstack command-line interface will come in handy. Just run the following command:

kn openstack flavor list

Depending on your tenancy settings you should get a similar output:

+--------+------------+...
| ID | Name |...
+--------+------------+...
| 8c7ef1 | ssc.tiny |...
| 8d7ef2 | ssc.small |...
| 8e7ef3 | ssc.medium |...
| 8f7ef4 | ssc.large |...
| 8g7ef5 | ssc.xlarge |...
+--------+------------+...

You may want to select the favor according to much resources you’d like to allocate. E.g.:

master_flavor = "ssc.medium"
node_flavor = "ssc.large"

Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

Deploy on Google Cloud (GCE)

Prerequisites

In this section we assume that:

	You have enabled the Google Compute Engine API: API Manager > Library > Compute Engine API > Enable

	You have created and downloaded a service account file for your GCE project: Api manager > Credentials > Create credentials > Service account key

Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init gce my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform [http://terraform.io/] configuration template that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

	cluster_prefix: every resource in your project will be named with this prefix (the name must match (?:[a-z](?:[-a-z0-9]{0,61}[a-z0-9])?), e.g. “kubenow”)

Google credentials

	gce_project: your project id

	gce_zone: some GCE zone (e.g. europe-west1-b)

Master configuration

	master_flavor: an instance flavor for the master (e.g. n1-standard-2)

	master_disk_size: master disk size in GB

Node configuration

	node_count: number of Kubernetes nodes to be created

	node_flavor: an instance flavor for the Kubernetes nodes (e.g. n1-standard-2)

	node_disk_size: nodes disk size in GB

In addition, when deploying on GCE you need to copy your service account file in the deployment configuration directory:

assuming that you are in my_deployment
cp /path/to/service-account.json ./

Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

Deploy on Amazon Web Services (AWS)

Prerequisites

In this section we assume that:

	You have an IAM user along with its access key and security credentials (http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html)

Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init aws my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform [http://terraform.io/] configuration template that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

	cluster_prefix: every resource in your tenancy will be named with this prefix

	aws_region: the region where your cluster will be bootstrapped (e.g. eu-west-1)

	availability_zone: an availability zone for your cluster (e.g. eu-west-1a)

Credentials

	aws_access_key_id: your access key id

	aws_secret_access_key: your secret access key

Master configuration

	master_instance_type: an instance type for the master (e.g. t2.medium)

	master_disk_size: edges disk size in GB

Node configuration

	node_count: number of Kubernetes nodes to be created

	node_instance_type: an instance type for the Kubernetes nodes (e.g. t2.medium)

	node_disk_size: edges disk size in GB

Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

Deploy on Microsoft Azure

Prerequisites

In this section we assume that:

	You have created an application API key (Service Principal) in your Microsoft Azure subscription: (https://www.terraform.io/docs/providers/azurerm/authenticating_via_service_principal.html#creating-a-service-principal)

Deployment configuration

First we need to initialize a deploy configuration directory by running:

kn init azure my_deployment

The configuration directory contains a new SSH key pair for your deployments, and a Terraform [http://terraform.io/] configuration template that we need to fill in.

Locate into my_deployment :

cd my_deployment

In the configuration file terraform.tfvars you will need to set at least:

Cluster configuration

	cluster_prefix: every resource in your tenancy will be named with this prefix

	location: some Azure location (e.g. West Europe)

Azure credentials

	subscription_id: your subscription id

	client_id: your client id (also called appId)

	client_secret: your client secret (also called password)

	tenant_id: your tenant id

Master configuration

	master_vm_size: the vm size for the master (e.g. Standard_DS2_v2)

Node configuration

	node_count: number of Kubernetes nodes to be created

	node_vm_size: the vm size for the Kubernetes nodes (e.g. Standard_DS2_v2)

Deploy KubeNow

Once you are done with your settings you are ready deploy your cluster running:

kn apply

The first time you are going to deploy it will take longer, since the KubeNow image needs to be imported. Future deployments will be considerably faster, since the image will be already present in your user space.

To check that your cluster is up and running you can run:

kn kubectl get nodes

As long as you are in the my_deployment directory you can use kubectl over SSH to control Kubernetes. If you want to open an interactive SSH terminal onto the master then you can use the kn ssh command:

kn ssh

If everything went well, now you are ready to deploy your first application.

Deploy your first application

In this guide we are going to deploy a simple application: cheese [https://github.com/kubenow/helm-charts/tree/master/charts/cheese]. We will deploy 3 web pages with a 2 replication factor. The master node will act as a reverse proxy, load balancing the requests among the replicas in the Kubernetes nodes.

The simple cluster that we just deployed uses nip.io [http://nip.io] as base domain for incoming HTTP traffic. First, we need to figure out our cluster domain by running:

grep domain inventory

The command will return something like domain=37.153.138.137.nip.io, meaning that our cluster domain name in this case would be 37.153.138.137.nip.io.

In KubeNow we encourage to deploy and define SaaS-layer applications using Helm [https://github.com/kubernetes/helm]. The KubeNow community maintain a Helm repository that contains applications that are developed and tested for KubeNow: https://github.com/kubenow/helm-charts. To deploy the cheese application you can run the following command, substituting <your-domain> with the domain name that you got above:

kn helm install --name cheese --set domain=<your-domain> kubenow/cheese

If everything goes well you should be able to access the web pages at:

	http://stilton.<your-domain>

	http://cheddar.<your-domain>

	http://wensleydale.<your-domain>

Traefik reverse proxy

KubeNow uses the Traefik [https://traefik.io/] reverse proxy as ingress controller for your cluster. Traefik is installed on one or more nodes, namely edge nodes, which have a public IP associated. In this way, we can access services with a few floating IP without needing LBaaS, which may not be available on certain cloud providers.

In the default setting KubeNow doesn’t deploy any edge node, and it runs Traefik in the master node.

Accessing the Traefik UI

One simple and quick way to access the Traefik UI is to tunnel via SSH to one of the edge nodes with the following command:

ssh -N -f -L localhost:8081:localhost:8081 ubuntu@<your-domain>

Using SSH tunnelling, the Traefik UI should be reachable at http://localhost:8081, and it should look something like this:

[image: ../_images/traefik_UI_example.png]
In the left side you can find your deployed frontends URLs, whereas on the right side the backend services.

Clean after yourself

Cloud resources are typically pay-per-use, hence it is good to release them when they are not used. Here we show how to destroy a KubeNow cluster.

To release the resources, please run:

kn destroy

Warning: if you delete the cluster configuration directory (my_deployment) the cluster status will be lost, and you’ll have to delete the resources manually.

Terraform troubleshooting

Since Terraform applies changes incrementally, when there is a minor issue (e.g. network timeout) it’s sufficient to rerun the command. However, here we try to collect some tips that can be useful when rerunning the command doesn’t help.

Contents

	Terraform troubleshooting
	Corrupted Terraform state

Corrupted Terraform state

Due to network issues, Terraform state files can get out of synch with your infrastructure, and cause problems. Since Terraform apply changes increme. A possible way to fix the issue is to destroy your nodes manually, and remove all state files and cached modules:

rm -R .terraform/
rm terraform.tfstate
rm terraform.tfstate.backup

OpenStack troubleshooting

Contents

	OpenStack troubleshooting
	Console logs on OpenStack

	Missing DomainID or DomainName to authenticate by Username

Console logs on OpenStack

Can’t get the status from the nodes with ansible master -a "kubectl get nodes"? The nodes might not have started all right. Checking the console logs with nova could help.

List node IDs, floating IPs etc.:

nova list

Show console output from node of interest:

nova console-log <node-id>

Missing DomainID or DomainName to authenticate by Username

When running terraform and/or packer you may be prompted with the following error:

You must provide exactly one of DomainID or DomainName to authenticate by Username

If this is the case, then setting either OS_DOMAIN_ID or OS_DOMAIN_NAME in your environment should fix the issue. For further information, please refer to this document: https://www.terraform.io/docs/providers/openstack/index.html.

Kubernetes troubleshooting

Here you can find some frequently used commands to list the status and logs of kubernetes. If this doesn’t help, please refer to http://kubernetes.io/docs.

Contents

	Kubernetes troubleshooting
	List kubernetes pods

	Describe status of a specific pod

	Get the kubelet service log

List kubernetes pods

If you are logged into the node via SSH:
kubectl get pods --all-namespaces

With Ansible from your local computer:
kn ansible master -a "kubectl get pods --all-namespaces"

Describe status of a specific pod

If you are logged into the node via SSH:
kubectl describe pod <pod id> --all-namespaces

With Ansible from your local computer:
kn ansible master -a "kubectl describe pod <pod id> --all-namespaces"

Get the kubelet service log

If you are logged into the node via SSH:
sudo journalctl -r -u kubelet

With Ansible from your local computer:
kn ansible master -a "journalctl -r -u kubelet"

More troubleshooting

Contents

	More troubleshooting
	SSH connection errors

	Figure out hostnames and IP numbers

SSH connection errors

In case of SSH connection errors:

	Make sure to add your private SSH key to your local keyring:

ssh-add ~/.ssh/id_rsa

	Make sure that port 22 is allowed in your cloud provider security settings.

If you still experience problems, checking out the console logs from your cloud provider could help.

Figure out hostnames and IP numbers

The bootstrap step should create an Ansible inventory list, which contains hostnames and IP addresses:

cat inventory

Image building

KubeNow uses prebuilt images to speed up the deployment. Image continous integration is defined in this repository: https://github.com/kubenow/image.

The images are exported on AWS, GCE and Azure:

	https://storage.googleapis.com/kubenow-images/kubenow-<version-without-dots>.tar.gz

	https://s3.amazonaws.com/kubenow-us-east-1/kubenow-<version-without-dots>.qcow2

	https://kubenow.blob.core.windows.net/system?restype=container&comp=list

Please refer to this page to figure out the image version: https://github.com/kubenow/image/releases. It is important to point out that the image versioning is now disjoint from the main KubeNow repository versioning. The main reason lies in the fact that pre-built images require less revisions and updates compared to the main KubeNow package.

Index

 _static/down-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_images/traefik_UI_example.png
€ Providers Health

kubernetes

@ galaxy.carmat.phenomenal.cloud/

Route
/

galaxy.carmat.phenomenal.cloud

[0 T Seoencsarycomesranomera oo

Q@ luigi.carmat.phenomenal.cloud/

Route
/

Iuigl.carmat.phenomenal.cloud

i | Backenciuig.oammat phenomenalcioud/

‘@ notebook.carmat.phenomenal.cloud/

Route
/

notebook.carmat.phenomenal.cloud

Documentation
= galaxy.carmat.phenomenal.cloud/
Rule Server URL Weight
PathPrefix:/ http://10.44.0.2:8080 http://10.44.0.2:808 1
]
Host:galaxy. carnat. phenomenal.cl
oud
 Losd Batancer wr |
 Pessttostescer |
= luigi.carmat.phenomenal.cloud/
Server URL Weight
Rule http://10.32.0.2:8082 http://10.32.0.2:808 1
2
PathPrefix:/
Host: Luigi. carmat. phenonenal. clo [Losd Batancer: wr |

ud

= notebook.carmat.phenomenal.cloud/

Server URL Weight

http://10.44.0.1:8888 http://10.44.0.1:888 1
Rule :
PathPrefix:/ [Load Batancor: wr |
Host:notebook. carmat. phenonenal

~cloud

[oetencmoncecametsronomers ot T resvosascr

traefikio

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to KubeNow's documentation!

 		Prerequisites

 		Install Docker

 		Get KubeNow

 		Deploy KubeNow on a host cloud

 		Deploy on OpenStack

 		Prerequisites

 		Deployment configuration

 		Deploy KubeNow

 		Deploy on Google Cloud (GCE)

 		Prerequisites

 		Deployment configuration

 		Deploy KubeNow

 		Deploy on Amazon Web Services (AWS)

 		Prerequisites

 		Deployment configuration

 		Deploy KubeNow

 		Deploy on Microsoft Azure

 		Prerequisites

 		Deployment configuration

 		Deploy KubeNow

 		Deploy your first application

 		Traefik reverse proxy

 		Accessing the Traefik UI

 		Clean after yourself

 		Terraform troubleshooting

 		Corrupted Terraform state

 		OpenStack troubleshooting

 		Console logs on OpenStack

 		Missing DomainID or DomainName to authenticate by Username

 		Kubernetes troubleshooting

 		List kubernetes pods

 		Describe status of a specific pod

 		Get the kubelet service log

 		More troubleshooting

 		SSH connection errors

 		Figure out hostnames and IP numbers

 		Image building

_static/down.png

